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Abstract
An overview of the basics of theoretical lattice dynamics is presented. Starting
from the classical formulation, a tutorial description of the evolution of the
lattice-dynamical theories is reported. After a brief summary of the mostly
used phenomenological models, the modern concepts of first-principles lattice
dynamics are introduced, paying special attention to the methods based on
the density-functional theory. Among these methods, the perturbative ab initio
approach is highlighted. Furthermore, the application of this formalism to some
cases of general interest is shown. In particular, we report on the controversy
about the origin of a peak in the second-order Raman spectrum of diamond, on
the phonon spectrum of the wurtzite nitrides and on the temperature-induced
phase transitions in tin.

1. Introduction

The theory of lattice dynamics is one of the most confirmed and successful theories of
solid state physics. Indeed, it can be considered a milestone in the comprehension of the
properties of crystals. Ranging from infrared, Raman, neutron, and in recent years synchrotron
spectra to non-linear properties such as thermal expansion and anharmonicity as well as to
the electron–phonon interaction and superconductivity, there is little left in which lattice-
dynamical phenomena do not play a relevant role. The formidable success of the theory of
lattice vibrations implicitly constitutes the best proof of the validity of the generally accepted
theoretical view of solid state physics.

The basic theory of lattice dynamics has been given by Born and Huang [1]. In their
work, they mainly issued the general properties of the dynamical matrix, e.g., its symmetry
and analyticity, without investigating its physical origin in terms of interactions between the
constituents (electrons and nuclei) of a crystal. The first attempts to address a systematic study
of the connection between electronic and dynamical properties were made in the seventies
[2]. Nowadays, current methods in theoretical solid state physics, mainly facing the problem
under the computational aspect, allow one to calculate the properties of simple materials by
using techniques which do not rely on input from experimental informations. Such methods,
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based on the quantum-mechanical theory, are commonly denoted as first-principles or ab initio
methods. Furthermore, the development of algorithms and calculations based on the density-
functional theory [3, 4] has supported in the last decade direct applications in the field of the
response of electronic systems to external perturbations such as atomic displacements or static
macroscopic electric fields [5, 6]. Thanks to these theoretical advances, it is possible now to
consider the lattice-dynamical calculations as a complementary tool to the experiment, which
is, in fact, completely independent from experimental inputs.

The aim of this work is to give a general classical introduction to the problem and at the
same time to bring the reader into contact with the main aspects of the modern approaches to the
lattice-dynamical theory. This paper can be formally divided into three parts. In sections 2 and 3
the classical basics of the theory of lattice dynamics are introduced together with a summary of
the most frequently used lattice-dynamical models. The modern ‘first-principles’ approaches
are presented to some extent in sections 4 and 5. Finally, some significant applications of the
‘new’ lattice-dynamical methods are reported in section 6.

2. Classical phonon theory

In this section, we introduce the problem of lattice dynamics of an infinite periodic lattice of
classical objects, which will be called ‘atoms’ in what follows. Let us consider a crystal made
of Nc cells with only one atom in the unit cell (the generalization to more than one atom is
straightforward) and indicate by R the position of the atom of the generic cell in the undistorted
crystal. Thus, the actual (instantaneous) position of this atom will be given as

R̃(t) = R + u(R, t). (1)

Equation (1) can be taken as the definition of the atomic displacements {u(R, t)}. The total
potential energy V of the crystal will in general be a function of the atomic displacements,
V = V({u}). The knowledge of this function allows one to write the equations of motion for
the atoms in the crystal, which in general will be given by a set of coupled equations of the
form

Mü(R, t) = − ∂V({u})
∂u(R, t)

(2)

where M is the atomic mass.

2.1. Harmonic approximation

The potential energy of the crystal can be written as a Taylor expansion in terms of the atomic
displacements around the minimum-energy positions,

V({u}) = V0 +
1

2

∑
R,R′

u(R, t) · C(R,R′) · u(R′, t) + O(u3). (3)

The term linear in u is absent due to the equilibrium condition (vanishing force on the atoms).
V0 is the equilibrium potential energy and the elements of C are the interatomic force constants
defined by

C(R,R′) = ∂2V
∂u(R)∂u(R′)

(4)

where the derivatives denote gradients taken at the potential minimum positions {u} = 0. The
harmonic approximation consists in retaining in equation (3) only terms up to the quadratic
order in the displacements. The atomic force constants defined in equation (4) are not
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independent quantities, but they are connected to each other by relations due to the symmetry
properties of the crystal. In particular, because of the translational invariance of the crystal,
the force constants only depend on the difference R − R′ and satisfy the acoustic sum rule∑

R C(R) = 0, which expresses the fact that the potential energy remains unchanged for a
uniform translation of the whole crystal. This property is related to the vanishing frequency
of the acoustic modes at the Brillouin zone centre. Within the harmonic approximation, the
equations of motion read

Mü(R, t) = −
∑
R′

C(R − R′) · u(R′, t). (5)

Translational invariance requires a solution that can be put in the Bloch-wave form

u(R, t) = 1√
M

w eiq·R−iωt . (6)

The allowed values of q are chosen according to the Born–von Kármán periodic boundary
conditions. By substitution of equation (6) in equation (5) we obtain

D(q) · w = ω2w (7)

where we have introduced the discrete Fourier transform:

D(q) = 1

M

∑
R

e−iq·RC(R). (8)

The 3×3 Hermitian matrix D(q) defined by equation (8) is called the dynamical matrix. In the
general case of Na atoms per unit cell, the dynamical matrix has 3Na × 3Na components and
the eigenvalue problem in equation (7) has 3Na solutions for ω2 at each q point in the Brillouin
zone; these will be denoted by ω2

j (q), where j = 1, 2, . . . , 3Na , and can be interpreted as the
branches of a multivalued function ω2(q). The relations expressed by the equations ω = ωj(q)

are known as phonon dispersion relations.

3. Lattice-dynamical models

The first approaches to the theoretical determination of the phonon dispersion relations
were involving lattice-dynamical models in which the relevant parameters were fitted to
the experimental frequencies. Indeed, these models were designed originally to interpolate
between experimental phonon frequencies, which were mostly determined by inelastic neutron
scattering. In the past, they have supported the understanding of neutron, Raman and other
spectra.

In principle, these models try to construct the dynamical matrix starting from some
approximation for the interatomic force constants or the potential energy of the crystal. The
electrostatic (Coulomb) part of the effective ion–ion potential is calculated analytically. This
part is indeed common to all model and quantum-mechanical procedures. The remaining part
of the interaction potential is either parametrized (as in the ‘force-constant model’ and the
‘Born–von Kármán model’ [1]) or determined from ad hoc model potentials like the Born–
Mayer potential for alkali halides or the Lennard-Jones potential for noble-gas crystals. While
these ‘rigid-ion models’ do not account for electronic polarization at all, a fictitious electronic
degree of freedom can be introduced to take into account dipolar effects. In the ‘shell model’,
an atom is represented by a non-polarizable ion core and a shell of valence electrons. In this
case an electric dipole is generated by the relative displacements of the shells with respect to
the ion cores [7, 8]. Furthermore, to describe the peculiarity of covalent crystals, alternative
models have been employed which use angular forces (‘Keating models’ [9]) or bond charges
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Figure 1. Phonon-dispersion curves of GaAs calculated within different schemes. From top to
bottom: rigid-ion model, overlap-shell model and bond-charge model. Circles denote neutron-
scattering data. From [11].

(‘bond-charge models’ [10]) to simulate the effects of the highly anisotropic distribution of the
electron density in these materials. An example of three different model results in comparison
with experimental data is given in figure 1. This figure demonstrates clearly all advantages and
disadvantages of lattice-dynamical models. All these models show almost perfect agreement
with experiment along the lines with the highest symmetry, while they fail (with different
trends) to reproduce the dispersions in lower-symmetry regions (e.g., along XWL). This is not
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surprising, due to the fact that the experimental input consists usually of the frequencies at the
high-symmetry points , X and L.

In conclusion, the advantage of these mechanistic models consists in their simplicity
as compared to quantum-mechanical computational efforts. In fact, they can be applied for
generating phonon-dispersion curves of complex systems of considerable size. However, the
models are an a posteriori construct: their predictive power is limited to those substances
which are already partially known, and even in these cases the predictions for the unknown
properties are not very reliable.

4. The role of electrons: quantum mechanics

In the previous sections, the explicit role of electrons has been either neglected or expressed
by ad hoc contributions to the ion–ion interaction. However, the complete description of a
system with electrons and nuclei cannot leave apart the quantum-mechanical nature of the
electrons. Within quantum mechanics, the properties of a system of nuclei (described by the
coordinate R = {RI } and labelled by c for core) and electrons (with r = {ri}) are derived
from the solution of the Schrödinger equation (SE):

Ĥtot�(r, R) = E�(r, R) (9)

with Ĥtot = Ĥ + T̂c + V̂c−c(R) and Ĥ ≡ Ĥel = T̂el + V̂el−el(r) + V̂c−el(r, R), where the
symbols have the standard meaning (T is the kinetic energy, V the interaction potential etc).
The solution of equation (9) for a realistic crystal is out of the scope of any analytical or
numerical treatment. However, the problem can be enormously simplified due to the very
different dynamical-response times of electrons and nuclei.

4.1. Adiabatic approximation

The basic approximation which allows us to decouple the electron and phonon dynamics is the
adiabatic approximation (also called the Born–Oppenheimer approximation). In the first step,
the electron Hamiltonian is diagonalized for a given nuclear configuration (i.e., R is considered
as a parameter)

Ĥ�(r;R) = E(R)�(r;R). (10)

Furthermore, one makes the following ansatz for the complete wavefunction

�(r, R) = χ(R)�(r;R). (11)

Inserting this ansatz in the SE (9), one obtains for χ(R) the following equation:

[T̂c + V̂c(R) + E(R)]χ(R) ≡ [T̂c + V̂ (R)]χ(R) = Eχ(R) (12)

provided the mixed terms h̄2

2M 〈�|∇2
R|�〉 and h̄2

M
〈�|∇R|�〉∇R , where M is now the nuclear

mass, can be neglected. This approximation appears reasonable due to the nuclear mass being
much larger than the electronic one. As a consequence of this assumption, while dealing with
the electronic motion, one can consider the nuclei in their equilibrium positions. Furthermore,
as can be deduced from equation (12), the nuclear motion is determined by a potential field
generated by the average motion of the electrons. The Schrödinger equation (12), moreover,
delivers for the nuclear motion almost the same results as in the classical case. Thus, the
results of section 2 remain formally valid (but with the exact effective potential!) also in the
quantum-mechanical case.
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5. First-principles lattice dynamics

Contrary to phenomenological models, ab initio calculations require an accurate and
parameterless knowledge of the microscopic electronic response to frozen-in lattice vibrations.
The basic idea common to all the first-principles methods is to determine the interatomic force
constants via the total energy of a crystal with frozen nuclear coordinates. In terms of the
quantities introduced in the previous section, this procedure has as central object the electronic
energy E(R) defined in equation (10). In the last decade, many theoretical advances have
been made towards the application of these concepts to lattice dynamics. There are two
commonly used approaches for this kind of calculation: the direct (frozen-phonon) method
and the perturbative approach. Most of these modern methods are essentially based on the
density-functional theory [3, 4], which will be discussed together with the two ab initio lattice-
dynamical methods in the following.

5.1. Density-functional theory

The density-functional theory (DFT) is a modern method for dealing with many-particle
systems. In several branches of physics and chemistry (e.g., solids, liquids, plasmas, molecules
and nuclei) it has become a standard method of calculation and has led to new insights into
physical and chemical concepts. In solid state physics alone there are, among many others,
applications to electronic band structure, atom clusters, superconductivity, phonons, surfaces
and defects [12]. From the general point of view, DFT can be regarded as a method for
finding the ground-state properties of the Schrödinger equation (SE) of a many-body system.
In comparison to the ‘classic’ methods of solving the SE, DFT presents itself as a more elegant
and simpler approach to the problem (e.g., in comparison with the Hartree–Fock method).

The properties of a system of N interacting electrons described by a Hamiltonian Ĥ can
be completely obtained through the solution of the Schrödinger equation

Ĥ�i ≡ [T̂ + Ŵ + V̂ ]�i = Ei�i (13)

where T̂ , Ŵ ≡ V̂el−el and V̂ are the kinetic-energy, the electron–electron-energy and the
external-interaction-energy operators, respectively. The two operators T̂ and Ŵ do not depend
on the special system which is considered. For a given number of electrons N the system is
specified by the external field v(r) corresponding to the operator V̂ (e.g., N electrons in an
electric field, in a magnetic field, in the coulombic potential of a nucleus or in the periodic
potential of an array of nuclei). For this reason the operators T̂ and Ŵ are said to be universal,
whereas the operator V̂ is not.

Within quantum mechanics, a prominent role is played by the electronic wavefunctions
of the ground (i = 0) and excited (i > 0) states �i(r1, . . . , rN). Each wavefunction �i is
a quite messy object which is a function of all the 3N electronic coordinates. On the other
hand, the corresponding electron density, ni(r) = 〈�i |n̂|�i〉, is a simple function of only three
variables. These considerations show that for the description of an electron system it would be
much more convenient to use the electron density as fundamental quantity than the electronic
wavefunction. This goal is achieved by the Hohenberg–Kohn (HK) [3] theorem, which states
the existence of a one-to-one correspondence (up to a trivial additive constant in the potential)
between the external potential v(r) and the ground-state electron density n0(r) ≡ n(r):

v(r) + c ⇐⇒ n(r). (14)

As v(r) defines the Hamiltonian of the system, every observable quantity must be determined
by v(r) only, i.e., in a more mathematical language, it must be a functional of v(r). In fact, the
HK theorem ratifies the possibility of determining every observable quantity as a functional of
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the ground-state electron density n(r). In particular this is true for the ground-state energy E0

(in the following simply reported as E), which, due to a very important corollary of the HK
theorem, has a global minimum at the exact ground-state electron density

E[n] = min
n′(r)

E[n′]. (15)

This equation defines the functional E[n] but does not give any explicit construction rule for
it. A formal expression of the ground-state energy functional can be obtained as follows:

E[n] = 〈�0|T̂ + Ŵ |�0〉 + V [n] ≡ F [n] + V [n] (16)

where F [n] is a universal functional of the ground-state electronic density, in the same sense
as the sine function sin(x) is a universal function of its argument x. Moreover, in the formal
expression of E[n] we have introduced the external-energy functional

V [n] = 〈�0|V̂ |�0〉 =
∫

drv(r)n(r) (17)

which is not a universal functional of n, depending—via v(r)—on the definition of the system
under consideration.

5.1.1. Local-density approximation. Whereas the form of the functional V [n] is known,
the functional F [n] can be formally written as the sum of the unknown kinetic-energy and
electron–electron interaction-energy functionals

F [n] = 〈�0|T̂ |�0〉 + 〈�0|Ŵ |�0〉 ≡ T [n] + W [n]. (18)

The actual kinetic-energy functionalT [n] can be approximated by the kinetic-energy functional
Ts[n] of a non-interacting electron gas at density n. Furthermore, the electron–electron
interaction energy functional W [n] can be approximated by the Hartree functional EH[n],
which expresses the mean-field coulombic interaction related to the charge distribution en(r).
The remaining unknown term within these approximations defines the so-called exchange–
correlation (XC) energy

Exc[n] = F [n] − Ts[n] − EH[n]. (19)

In practice, this term contains what is missing from the sum of EH and Ts to get F . The reason
for introducing this representation lies in the fact that both Ts and EH are easy functionals
(EH[n] is known and Ts has a known expression in terms of single-particle wavefunctions).

An actual calculation requires, nevertheless, an expression, obviously approximated, for
Exc[n]. That mostly used in the literature is the local-density approximation:

Exc[n] ≈ ELDA
xc [n] =

∫
εh

xc(n(r))n(r)dr (20)

where εh
xc(x) is the exchange–correlation energy per particle of the homogeneous electron gas

with density x.

5.1.2. Kohn–Sham equations. Once the ground-state energy functional has been
characterized by the choice of the approximation for the exchange–correlation energy, the
remaining problem is to derive the ground-state electron density using the variational principle.
The minimization of the ground-state energy functional is particularly easy (at least from the
formal point of view) if it is performed in terms of one-particle orbitals. More details can be
found in [13]. One obtains a set of self-consistent one-particle coupled equations, which are
known as Kohn–Sham (KS) equations [4],(

− h̄2∇2

2m
+ vKS[n]

)
φ(r) = εφ(r) (21)
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where m is the electron mass and the effective KS potential is given as

vKS[n] = v(r) +
δEH[n]

δn(r)
+

δExc[n]

δn(r)
(22)

where n(r) = ∑
occ.orb. |φ(r)|2. The self-consistent solution of the KS equations yields the

ground-state electronic density n(r).

5.1.3. Plane-wave expansion. The numerical implementation of the minimization of
the ground-state energy requires the representation on a finite basis of the KS equations.
The optimal choice of the basis set is problem dependent: for systems with different
physical properties (in particular with different degree of localization of the single-particle
wavefunction) different basis sets have to be chosen. For molecular systems the most natural
choice is to expand the wavefunctions in atomic orbitals localized on the different atoms. On
the other hand, the periodic character of the wavefunctions in a solid suggests in this case a
plane-wave basis set. The latter is the most frequently used basis set in solid state calculations;
nevertheless, in some special cases, mixed sets of plane waves and Gaussian functions are used
to improve the description of partially localized states (such as those coming from d atomic
states). When the plane-wave expansion of the wavefunctions is used, the dimension of the
basis set is fixed by considering only plane waves with momentum lying inside a sphere of
radius kmax. This constraint is usually expressed in terms of the so-called kinetic-energy cutoff
defined by Ecut = h̄2k2

max/2m. Only plane waves which have a kinetic energy less than Ecut

are included in the calculation.

(a)

(b)

v

v

c

Figure 2. Schematic representation of the actual potential (a) and the pseudopotential (b) in a solid.
The label v (c) indicates the valence (core) states.

5.1.4. Pseudopotentials. The actual periodic potential in a solid is schematically represented
in figure 2. Two different types of single-particle eigenstate can be found: c, core states which
are mainly atomic-like localized states, and v, valence states at higher energies which extend
to the whole crystal. The description of the core states in terms of a plane-wave expansion
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requires very large basis sets. However, the core states are supposed to have only a scarce
influence on the chemical and bond-related properties of a solid. In fact, in this case the actual
potential can be substituted with a pseudo-potential, which does not possess core states but
reproduces exactly the energy of the valence (extended) states of the original potential (see
figure 2(b)).

5.1.5. Brillouin-zone integrations: special points. The total ground-state energy of a periodic
solid is often expressed in terms of reciprocal-space quantities which contain summations over
the Brillouin zone (BZ) of the crystal. These terms have the general form

I =
∑
q∈BZ

f (q) (23)

where f is periodic in reciprocal space. The direct evaluation of I involves the calculation
of f (q) at many q points in the BZ. However, the calculation of f for a single q point can
be numerically very expensive. This problem can be overcome by using the so-called special
points. The integral I can be written

I =
L∑

q∈S
w(q)f (q) + RL (24)

where the set S is a set of special points—weighted by w(q)—if, for the given L, the remainder
RL is minimum. For practical purposes the most efficient sets of special points are those for
which the remainder is close to zero, i.e., for RL ≈ 0.

5.2. The ‘frozen-phonon’ method

Using the methods described in the previous section the electronic energy of the crystal can be
computed as a function of a suitably chosen phonon coordinate (i.e., atomic displacements).
In the frozen-phonon approach to lattice dynamics a distorted crystal is treated as a crystal
in a new structure with a lower symmetry than the undistorted one [14]. The same method
is used for dealing with both the undistorted and the perturbed crystals. Subsequently, the
interatomic force constants can be obtained by numerical differentiation of the calculated
energy. Phonon frequencies calculated with this method are shown to be very accurate [14, 15].
Although the frozen-phonon method allows in principle the calculation of the derivative of any
order, the differentiation is done by taking differences between large numbers. Therefore, it
requires in practice an increasing accuracy with increasing order of derivative. Furthermore,
the symmetry reduction due to the perturbation increases drastically the computational effort.
This fact restricts the computation to displacements corresponding to wavevectors q with high
symmetry which lead to superstructures with not too many atoms in the corresponding unit
cell.

5.3. Density-functional perturbation theory

The use of supercells can be avoided employing the perturbative approach to the density-
functional theory. The basic DFT gives the ground-state energy of an electron system in an
external potential. A generalization of DFT can be found to give also the response to many
significant physical perturbations such as, e.g., the atomic displacement (phonons, lattice-
dynamical properties) or the electric field (dielectric properties). This generalization is called
density-functional perturbation theory [5, 6] and will be briefly described in the following.
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Let us assume that the total external potentialV (r) = ∑
i v(ri )depends on some parameter

(or set of parameters) λ. Let us also assume that this dependence can be expanded in a Taylor
series,

Vλ = V0 + V1λ + V2λ
2 + O(λ3) (25)

where the explicit dependence on r has been omitted. The corresponding ground-state electron
density can be written as

nλ(r) = n0(r) + λn1(r) + λ2n2(r) + O(λ3). (26)

Using the Hellmann–Feynman theorem [16], the derivative of the ground-state energy with
respect to the parameter λ is given by

∂E(λ)

∂λ
=

∫
n(r, λ)

∂V (λ)

∂λ
d3r. (27)

The formal integration of the previous expression yields

Eλ = E0 + E1λ + E2λ
2 + · · · (28)

where Ei is, in principle, a functional of the coefficients nj (essentially derivatives calculated
for the unperturbed system) of the expansion of the ground-state electron density up to the
order i [17]. In particular, the second-order term E2 of the expansion—corresponding to the
electronic contribution to the force constant matrix if λ = {u} or to the dielectric constant if λ

is an electric field—is found to be a functional of the electron density only up to the first order

E2 = E2[n0, n1]. (29)

This result can be generalized by showing that the knowledge of the derivative of the ground-
state density up to order ν gives the derivatives of the energy up to order 2ν + 1; the resulting
theorem is known as the 2ν + 1 theorem [17].

In the specific case of a phonon perturbation, the explicit form of equation (29) allows us
to write the electronic contribution to the interatomic force constants as

Cel(R,R′) =
∫

∂n(r)

∂u(R)

∂V

∂u(R′)
d3r +

∫
n0(r)

∂2V

∂u(R)∂u(R′)
d3r (30)

where the derivatives of the external (bare electron–ion) potential can be expressed analytically
and the linear response of the electron density to a distortion of the nuclear geometry,
∂n(r)/∂u(R), can be determined in terms of the linear response of the KS orbitals.
These quantities can be obtained by applying the first-order perturbation theory to the KS
equations (21). This procedure results in a system of coupled equations that should be solved
self-consistently [6, 17].

6. A few interesting applications

First application of the perturbative method presented in section 5.3 has been made to derive the
phonon-dispersion curves of some prototype tetrahedral semiconductors [6]. As an example
of these calculations we show in figure 3 the results for GaAs. The agreement with the
neutron scattering data [11] along all directions in the Brillouin zone is very good, especially
in comparison with the results of the model calculation of figure 1. Various other applications,
ranging from metals, semiconductor surfaces and oxides to superconductors, can be found in
the literature [18, 19]. In the following, we will focus our attention on some peculiar cases
which are of didactic and scientific interest.
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Figure 3. First-principles phonon dispersion curves of GaAs [6]. Experimental neutron-scattering
data are denoted by diamonds [11].

6.1. The two-phonon Raman spectrum of diamond: a controversial interpretation

One of the most interesting features in the two-phonon Raman spectrum of diamond is the
sharp peak near the high-frequency cutoff. Raman-scattering experiments show that this sharp
peak occurs, at room temperature, approximately 3 cm−1 higher than twice the frequency of
the first-order Raman line [20]. Several attempts have been made in the past for assigning the
origin of this peak to different kinds of anomaly of diamond (for a complete review see [21]
and references therein). First-order Raman scattering experiments, a two-phonon bound state
and an anomaly in the bond polarizability are only a few examples of the many suggestive
hypotheses that have been made and that have been shown to be erroneous.

The most accreditate explanation of this feature of the Raman spectrum can be related to a
peculiarity in the phonon dispersion curves of diamond which would cause the phonon density
of states to have a peak slightly above the optical frequency at the  point. In practice, the peak
in the Raman spectrum would simply correspond to the peak of the density of states, without
invoking ad hoc anomalies. Using the critical-point analysis, this would, in turn, mean that
the dispersion of the uppermost branch in diamond has a strong overbending in any direction,
resulting in a minimum frequency at the zone centre. In fact, first-principles calculations for
diamond show that, at variance with the other tetrahedral semiconductors [6], the phonon
dispersion of the uppermost (longitudinal) branch has a minimum at the  point [21, 22]. This
can be directly seen in the three-dimensional plot in figure 4. As a consequence, the calculated
phonon density of states in figure 5 shows a peak above ωopt().

In a recent work, Schwoerer-Böhning et al [23] presented results of inelastic x-ray
scattering experiments which seem to contradict this interpretation. They found an overbending
only along the X direction, with more standard dispersion curves along the other high-
symmetry lines. However, even more recent experimental data taken by inelastic neutron
scattering [24] seem, on the other hand, to confirm the overbending as can be seen in figure 6.
In conclusion, the discrepancy between the two experiments, and between the experiments and
the calculations, needs more investigation.

6.2. Phonon dispersion of wurtzite-type nitrides

The wide-band-gap wurtzite semiconductors GaN and AlN are currently of great interest
for optoelectronic applications at blue and near-ultraviolet wavelengths, as well as in high-
temperature and high-frequency electronics. Since the behaviour of carriers in such devices
is affected by their interaction with phonons, the lattice-dynamical properties of these nitrides
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Figure 4. Phonon-dispersion sheet of diamond on the (100) plane. The zero level of the three-
dimensional plot is the optical  point frequency; i.e., the displayed spectrum consists only of
overbending frequencies. We also show the corresponding plane of the Brillouin zone with some
special points and a contour plot of the phonon dispersion. The interval between contour lines is
3 cm−1.

Figure 5. Calculated phonon density of states of diamond in the optical region. The vertical dashed
line indicates the  point optical frequency.

are very important and have been studied intensively, mainly by Raman scattering and
phenomenological models. However, a comprehensive study of the phonon dispersion
curves of these materials has escaped for a long time both experimental and first-principles
investigation. On the experimental side, the main reason for the lack of phonon-dispersion
information on wurtzite GaN and AlN is that single crystals large enough for inelastic neutron
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Figure 6. Phonon dispersion of diamond along the high-symmetry directions. The solid lines are
the results of ab initio lattice-dynamical calculations [22], the circles are measured phonon energies
from inelastic x-ray scattering [23] and the full diamonds are inelastic neutron scattering data [24].
In order to facilitate the comparison, the synchrotron data have been displaced 0.7 meV upwards.
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Figure 7. Phonon dispersion of wurtzite-type GaN along several high-symmetry directions [25].
The solid lines are the results of ab initio lattice-dynamical calculations, the filled circles are
measured phonon energies from inelastic x-ray scattering and the open diamonds at  are the
Raman data. The theoretical results have been scaled by a factor of 0.97 in order to obtain optimum
agreement with the experiment.

scattering do not exist. From the theoretical point of view, the strong localization of the valence
orbitals of the nitrogen atom makes the ab initio pseudopotential calculation particularly
demanding. However, experimental limitation can now be overcome with inelastic x-ray
scattering (IXS). With the availability of dedicated beamlines at third-generation synchrotrons,
IXS has developed into a powerful alternative for studying dispersion effects of elementary
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excitations in solids. On the other hand, the use of soft norm-conserving pseudopotentials [27]
allows a drastic reduction of the computational efforts.

Figure 8. Phonon dispersion of wurtzite-type AlN [26]. Solid lines indicate first-principles
calculations; the experimental data from inelastic x-ray scattering experiments are denoted by
diamonds.

The results of a combined theoretical and experimental investigation of the lattice-
dynamical properties of GAN and AlN [25, 26] are presented in figures 7 and 8, respectively.
Nonlocal pseudopotentials (including nonlinear core corrections for Ga in GaN), 14 special
points in the irreducible wedge of the Brillouin zone and a plane-wave basis set with a kinetic-
energy cutoff of 50 Ryd, have been used in the calculation. Although general agreement is quite
good, the calculations for GaN are systematically somewhat larger than the experimental data.
For this compound, the difference between theory and experiment increases with increasing
phonon frequency. In order to obtain optimum agreement with the experimental data, the
theoretical results were scaled in figure 7 by a constant factor of 0.97. This correction is well
within the overall reliability of the calculation. One main result of our study is the frequency of
the two silent B1 modes at , since these data cannot be obtained either by first-order Raman
or by infrared spectroscopy. These phonons are rather important input parameters for fits of
phenomenological models.

6.3. Phase transitions in tin

Another interesting application of the ab initio phonon calculations described in section 5 is
the investigation of the temperature-induced phase transition of tin [28]. Tin is commonly
found in one of two allotropic forms: at ambient pressure, the stable phase at low temperature
is α-Sn (grey tin), which is a zero-gap semiconductor having the diamond structure; when
the temperature is raised above Tc ≈ 13 ◦C, the crystal transforms into the β phase (white
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Figure 9. Crystal structure and first Brillouin zone for the diamond-structure α (left) and the
bct-structure β (right) phases of tin.

Figure 10. Calculated phonon dispersions (continuous lines) for the α (upper panel) and β (lower
panel) phases of tin. Experimental data from neutron diffraction (from [30] and [31] for the α and
β phases, respectively) are reported with diamonds.

tin), which is a body-centered tetragonal metal (see figure 9). The α ↔ β transition in tin
is possibly the simplest and prototypical case of an entropy-driven structural transformation
which is determined by the (harmonic) vibrational properties of the two phases of the material.



7608 P Pavone

As the transition temperature of theα ↔ β transition in tin is ≈60% of the melting temperature,
we do not expect, in this case, anharmonic effects to play any important role. The free energies
of the two phases can be thus calculated in the harmonic approximation, which reads

F(1, T ) = E0(1) + kBT
∑
ν

ln

[
2 sinh

(
h̄ων

2kBT

)]
(31)

where E0(1) is the static crystal energy—easily accessible to standard local-density-functional
calculations, kB is Boltzman’s constant, 1 is the crystal volume and ων is a normal-mode
frequency which can be calculated using DFPT. Due to the metallic character of one of the
two phases, special attention should be paid to the Brillouin-zone integrations. We employed
the Gaussian-smearing special-point technique [29], using a Gaussian width of 0.01 Ryd and
0.02 Ryd for the α and β structures respectively, which at convergence require 60 and 163
special points in the irreducible wedge of the Brillouin zone.

Figure 11. Zero-pressure free-energy (solid lines) and internal-energy (dashed lines) curves for
the α and β phases of tin as functions of temperature. The thin vertical dotted line indicates
the theoretical transition temperature, while the experimental value for Tc is shown by the arrow.
λ0 = 359 cal mol−1 is theT = 0 K free-energy difference—including the zero-point contribution—
while λ = 482 cal mol−1 indicates the latent heat adsorbed in the α ↔ β transition. Finally, the
inset displays the temperature dependence of the vibrational entropies of the two phases.

The calculated static energy of the α structure lies 516 cal mol−1 below that of the β phase.
Taking into account zero-point contributions to the internal energy, at T = 0 K the α phase
turns out in our calculations to be more stable than the β one by 359 cal mol−1. In figure 10
we display our calculated phonon dispersion curves for the α and β phases of tin. Besides the
excellent agreement with available neutron-diffraction experimental data, the main feature to
be noticed is the different range spanned by the vibrational bands in the two phases, which
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extends up to ≈200 cm−1 in grey tin, while it is limited to ≈140 cm−1 in white tin. The fact
that the structure with a larger static energy has smaller vibrational frequencies indicates that
a phase transition may occur when raising the temperature, as a consequence of the larger
value of its entropy at high temperature. For the sake of simplicity, suppose that each structure
(α or β) is characterized by a single vibrational frequency (Einstein model): the difference
between the entropies of the two structures approaches for increasing temperature the value
2S∞ ≈ 3kB ln(ωβ/ωα). Thus, at sufficiently high temperature the entropic contribution to the
free-energy difference, −T2S∞, takes over the difference between the internal energies, and
the β phase becomes more stable (provided the transition temperature so obtained is well below
the melting point of the two phases, so that the harmonic approximation is well justified).

The energetic behaviour is clearly illustrated in figure 11, where the internal energy and
the free energies of the two structures are displayed. The internal energies of the two phases
increase with temperature and their difference saturates at a value which is ≈35% larger than
at T = 0 K. The free-energy curves bend down, and their difference decreases quasi-linearly
with temperature, vanishing at Tc = 38 ◦C. The quality of the agreement between theory
and experiment achieved for the α ↔ β transition in tin is such as to give confidence in
the predictive power of free-energy calculations based on the harmonic approximation and
vibrational frequencies calculated from first principles, and it indicates that this is the method
of choice in all those cases where the relevant phenomena occur at temperatures well below
the melting point.
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[26] Schwoerer-Böhning M, Macrander A T, Pabst M and Pavone P 1999 Phys. Status Solidi 215 177
[27] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[28] Pavone P, Baroni S and de Gironcoli S 1998 Phys. Rev. B 57 10 421
[29] de Gironcoli S 1995 Phys. Rev. B 51 6773
[30] Price D L, Rowe J M and Nicklow R M 1971 Phys. Rev. B 3 1268
[31] Rowe J M 1967 Phys. Rev. 163 547


